
4810-1183: Approximation and Online Algorithms with Applications 

Lecture Note 1: Course Overview, Optimization Models, Linear Programming 

 

What do we aim at this class? 

During many undergraduate courses in CS, students have a chance to join several “application-oriented 

courses” such as communication networks, databases, OS, or machine learnings. On the other hand, 

students have a chance to learn several theoretical CS concepts such as computational complexity, 

hardness, and data structures.  However, for some of the students, the “application-oriented courses” 

and the theoretical CS concepts might look totally separated as they are in totally different worlds. 

 

At the graduate level, we expect students to produce cutting-edge research results by merging 

everything they have learnt. However, the merging is not very easy as things are taught separately.  

 

Because of that, in this class, I will guide you to the beginning of the merging. I will raise a lot 

of problems in the application-oriented courses, and will show you how to solve it using theoretical CS 

concepts. As some of you have not learnt enough theoretical CS concepts during the undergraduate 

courses, I will try to give some more theoretical backgrounds, in particular on the hardness, 

approximation algorithms, and online algorithms. For those who have already learnt the concepts, they 

will be your reminders. 

How to solve a problem in IST? 

There are many patterns to solve problems in information science and technology. The pattern in the 

picture below is one of the most common patterns.  

 

 



 In my opinion, the most important and the hardest step of the whole flowchart is the first step. 

You have to transform what you have into some mathematical formulas with the clear goal here. That 

is not easy to do, and is more art than science. During this course, you will learn this skill by a lot of 

examples. 

 Step 2 is when you try to solve your mathematical model using several algorithmic toolboxes 

you have learnt during undergraduate courses, such as divide and conquer, dynamic programming, or 

linear programming. Because we believe that most of IST problems “cannot be solved”, we would like 

to skip this step in this course. 

 When you want to claim that a problem cannot be solved, there is a way to state that formally, 

called as “NP-Hardness”. To make everyone believe that a problem cannot be solved, people usually 

try to prove that the problem is NP-hard. That is Step 3, which we will discuss on next week. 

 There are several ways to cope with a problem that cannot be solved. One of the most 

conventional ways is to use approximation algorithms (Step 4), which is the main focus of this course. 

 Approximation algorithms can solve almost all problems, but there are cases where we cannot 

find any approximation algorithm for our problems. It is possible to claim that no one can do that 

formally. That would be done in Step 5. If no approximation algorithm can solve our problems, we may 

try to get back to Step 1 and reformulate the problem there. 

What is online algorithm? 

Another main topic of this class is online algorithm, where you have to produce some “output” while 

you have not got a whole input. The most well-known problem is called as “secretary problem”. We 

want to have just one secretary, and we have a number of applications for the job. We interview all 

applicants, but, just after each interview, we have to tell the applicants immediately if they are hired. If 

we hire one secretary, we cannot fire him/her. So, we cannot interview more applicants, although there 

might be some with a better capability. 

 Those kind of questions happen a lot in IST, and we will try to address those problems in this 

course. 

Optimization Models 

Now, it is the time to work on the first step in our flow chart. We have a problem in IST and we want 

to solve the problem using some theoretical CS concepts. To kick start a whole process, we have to 

answer the following 4 questions: 

1) What do we have in real world? What are important for our problem? [input] 

2) What do we want to have? [output] 

3) What the output can be, what it cannot be? [constraint] 

4) What is the most desirable output? [objective function] 

After we have some answers for the 4 questions, we have to transform them into some mathematical 

formulations. Then, we can devise theoretical tools for those mathematical formulations. 

Let us try to illustrate you how it works by a toy example (which is unfortunately not an IST 

problem). Consider the following problems: 

 We can eat only Gyu-don and Melon-pan 

 Gyu-don and Melon-pan contain different amounts of carbohydrates and proteins 



This is what you have in real world. It is your task to find the “best” way to consume Gyu-don and 

Melon-pan. We can formulize them by more than one ways, but let try to minimize our cost of living. 

To do that, we might formulize: 

Input: We can look in Google to find how much carbohydrates and proteins that Gyu-don and Melon-

pan give. Also, we can look there how much carbohydrates and proteins we should take every day. We 

can go to some places to check the price of Gyu-don and Melon-pan. 

Output: We want to find how much Gyu-don and Melon-pan we should eat in each day. 

Constraint: We want to have enough proteins and carbohydrates in every day. 

Objective Function: We want to find the amounts that minimize the cost we have to pay in each day. 

 After we have some rough ideas of our optimization models, we will now formulate it into some 

mathematical formulations. One way to do is as follows: 

Input:    Carbohydrate amount that a Gyu-don gives 𝑎𝑐,𝑔 ∈ ℝ≥0 

Carbohydrate amount that a Melon-pan gives 𝑎𝑐,𝑚 ∈ ℝ≥0 

Protein amount that a Gyu-don gives 𝑎𝑝,𝑔 ∈ ℝ≥0 

Protein amount that a Melon-pan gives 𝑎𝑝,𝑚 ∈ ℝ≥0 

Amount of carbohydrate that we should have per day 𝑏𝑐 ∈ ℝ≥0 

Amount of protein that we should have per day 𝑏𝑝 ∈ ℝ≥0 

Price of a Gyu-don 𝑐𝑔 ∈ ℝ≥0 

Price of a Melon-pan 𝑐𝑚 ∈ ℝ≥0 

Output:   Amount of Gyu-don we take in one day 𝑥𝑔 ∈ ℝ≥0 

   Amount of Melon-pan we take in one day 𝑥𝑚 ∈ ℝ≥0 

Constraint:   𝑎𝑐,𝑔𝑥𝑔 + 𝑎𝑐,𝑚𝑥𝑚 ≥ 𝑏𝑐 

   𝑎𝑝,𝑔𝑥𝑔 + 𝑎𝑝,𝑚𝑥𝑝 ≥ 𝑏𝑝 

Objective Function:  Minimize 𝑐𝑔𝑥𝑔 + 𝑐𝑚𝑥𝑚 

 We can leave only mathematical details without losing any information. 

Input:    𝑎𝑐,𝑔, 𝑎𝑐,𝑚, 𝑎𝑝,𝑔, 𝑎𝑝,𝑚, 𝑏𝑐 , 𝑏𝑝, 𝑐𝑔, 𝑐𝑚 ∈ ℝ≥0 

Output:   𝑥𝑔, 𝑥𝑚 ∈ ℝ≥0 

Constraint:   𝑎𝑐,𝑔𝑥𝑔 + 𝑎𝑐,𝑚𝑥𝑚 ≥ 𝑏𝑐 

   𝑎𝑝,𝑔𝑥𝑔 + 𝑎𝑝,𝑚𝑥𝑝 ≥ 𝑏𝑝 

Objective Function:  Minimize 𝑐𝑔𝑥𝑔 + 𝑐𝑚𝑥𝑚 

The above is what we will call as “optimization model” in this course. When we can arrive to something 

in this form, we are ready to take off. We can apply several algorithmic and theoretical techniques to 

solve the problem. As most of you can guess, we can use a technique called as “linear programming” 

to solve the problem. 



Linear Programming (LP) 

LP is a very powerful algorithmic toolbox. In fact, it is shown that “LP can solve all problems that can 

be solved [1]”. The formulation is in the following form: 

Input:   Matrix A, vectors 𝐛, 𝐜  

Output:   Vector 𝐱 

Constraint:  𝐀 ⋅ 𝐱 ≥ 𝐛 

Objective Function: Minimize 𝐜T ⋅ 𝐱 

It is known that we can use a method called “the interior-point method” to solve LP [2]. However, a 

heuristic algorithm, called as “simplex method”, although cannot solve LP for some inputs, is known 

to be faster in practice. There are a lot of libraries developed to solve LPs. In my experiments, CPLEX®, 

developed by IBM, is one of the fastest libraries. 

Let us get back to our previous example. We can reformulate the “Gyu-don & Melon-pan problem” to 

the following: 

Input:    𝐀 = [
𝑎𝑐,𝑔 𝑎𝑐,𝑚
𝑎𝑝,𝑔 𝑎𝑝,𝑚

] , 𝐛 = [
𝑏𝑐
𝑏𝑝
] , 𝐜 = [

𝑐𝑔
𝑐𝑚

] 

Output:   𝐱 = [
𝑥𝑔
𝑥𝑚

] 

Constraint:   𝐀 ⋅ 𝐱 ≥ 𝐛 

Objective Function:  Minimize 𝐜𝑇 ⋅ 𝐱 

After the reformulation, it is clear that we can use LP algorithm to solve the problem. This course will 

give you examples how problems are reformulated. We hope that we will get the skill by taking this 

course. 

What do I mean by “solve”? 

Suppose that the size of our input file is 𝑛 bits. In this course, we will say that “we can solve an 

optimization model” if we can find an “algorithm of which the running time is no more than a 

polynomial function of 𝑛”. We will call such kind of algorithms as “polynomial-time algorithm” during 

this course. 

The polynomial-time algorithms do not always “solve” problems in practice. Consider the case when  

the running time is somewhere around 𝑛1000, which is still a polynomial function of 𝑛. The running 

time we need for 10-bit input is 101000, which is more than the number of atoms in the world. However, 

in our experience, when one can find an algorithm with the 𝑛1000 running time, we usually can reduce 

the running time to 𝑛5 or 𝑛6. 

In the last few years, when we are in big data era, the input size 𝑛 becomes very large. The number is 

sometimes even larger than 1012. When we have such a large input, we cannot even scan everything 

we have there. The algorithm with running time = 𝑛 is not acceptable anymore, and we have to find an 

algorithm with even smaller running time.  

Because of that, in big data era, we have to find an alternative definition for “solve”. Those theories are 

still young and we still have a lot to explore. We will sometimes mention them during this course. 



I also want to mention that big data is an opportunity for online algorithms. Because we cannot scan a 

whole input, we have to output the best things we “learn” from the partial information. Online 

algorithms can do that, so it is fit to the setting. 

Exercises 

At international center for information science and technology, we have a mission to make all 

communications between students possible. Unfortunately, there is still a language barrier between 

students. Let a language ability of Student 1 and Student 2 be ℓ1 and ℓ2 respectively. By a research result, 

we found that a communication between them will happen when ℓ1 + ℓ2 is no smaller than a given 

integer 𝛼 ≥ 1. We know the current language ability of all students. We increase the language ability of 

students so that all pairs of students can communicate together. However, increasing students’ language 

ability is not free. If we increase a cost of a student from ℓ to ℓ′, it will cost us 10000 ⋅ (ℓ ′ − ℓ) yen. We 

want to minimize our cost.  

Question 1: Suppose that we have 3 students. The language abilities of Student 1, 2, 3 are 2, 3, 1 

respectively, and 𝛼 is 5. Which students should we improve their language ability? And, how much 

should we improve?  

Question 2: What is the optimization model for solving Question 1? 

Question 3: Construct a linear program to solve the optimization model in Question 2.  

Hand-on exercises 

CPLEX® is free only for academics and installing it is not a very easy task. The easiest way to use the 

package software is to use the online tool at https://neos-server.org/neos/solvers/milp:CPLEX/LP.html. 

Load a file with the following text to the file box “LP file” at the “Web submission form”. 

Maximize 

x1 + 2x2 + 3x3 

st 

-x1 + x2 + x3 <= 20 

x1 - 3x2 + x3 <= 30 

x1 <= 40 

end 

Question 4: Which LP we are aiming to solve by the above text file? What is matrix A, vectors b,c in 

this case. What are inputs, outputs, constraints, and objective functions here? 

Also, load a file with the following text to the file box “Display file” at the “Web submission form”. 

The command tells CPLEX to give the value of x1, x2, and x3 that satisfy the constraint and optimize 

the objective function.  

display solution variables - 

You have to put your e-mail address here. This is to notify you the results in case that it takes a long 

time to solve the linear program and your web browser terminates before the solver finishes. I have 

never received a spam mail from this website. 

Question 5: What is the value of x1, x2, and x3 that satisfy the constraint and optimize the objective 

function? What do you have from the solver? 

Question 6: Create an LP file to solve the “Gyu-don Melon-pan problem” when 𝑎𝑐,𝑔 = 30, 𝑎𝑐,𝑚 =

50, 𝑎𝑝,𝑔 = 40, 𝑎𝑝,𝑚 = 60, 𝑏𝑐 = 200, 𝑏𝑝 = 200, 𝑐𝑔 = 300, 𝑐𝑚 = 500 . What is the solution that you 

have from LP? 

https://neos-server.org/neos/solvers/milp:CPLEX/LP.html


Question 7: Discuss why the solution in Question 6 is not practical. 
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